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We consider two-dimensional (2D) incompressible turbulent flow in a statistically steady state in
which energy and enstrophy inputs, localized around a forcing mode, are compensated by a linear fric-
tional force at large scales and viscous dissipation at small scales. The scaling properties of the energy
and enstrophy established cascades are studied via the velocity structure functions. The extended self-
similarity is used to obtain a better estimate of the scaling exponents of the structure functions at any or-
der. Three distinct scaling regimes are observed. At large scales, corresponding to the inverse cascade
of energy, the scaling exponents are well defined and similar to those observed in 3D isotropic tur-
bulence, with large deviations from the Kolmogorov 1941 scaling (strong intermittency). At intermedi-
ate scales, where coherent structures dominate, no scaling is present. At small scales, corresponding to
the direct enstrophy cascade, a second scaling regime is obtained, with almost nonanomalous scaling ex-
ponents (weak intermittency). The intermittency obtained in the two scaling regimes is found to be con-
sistent with the hierarchical intermittency model of turbulence of She and Lévéque [Phys. Rev Lett. 72,
336 (1994)], developed in the context of 3D turbulence. The model is characterized by two main parame-
ters, A and (3, describing respectively, the smallest dissipative scales and the degree of intermittency of
the energy transfers. These parameters are measured in the two regimes. In the inverse cascade, =0.7
and A=0.47, close to the values observed in 3D turbulence (3=A=2/3). In the direct enstrophy cas-
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cade, B is close to 1, and A close to 0, which explains the weak intermittency observed.

PACS number(s): 47.27.Gs, 47.27.Eq

I. INTRODUCTION

One important characteristic of two-dimensional (2D)
turbulence is the presence of strong coherent vortices su-
perposed on a well-mixed background. As shown by
Benzi et al. [1], these vortices inhibit the cascade locally,
and can be viewed as drops of laminar fluids in an other
wise turbulent flow. They may bring dominant contribu-
tions to energy transfers, which explains the observed
dependence of the energy spectrum of 2D turbulence on
initial conditions [2,3]. For this reason, it is often con-
sidered that, unlike 3D turbulence, 2D turbulence cannot
be universal.

Are there any reasons to believe in universality in (2D
and 3D) turbulence? In many systems, universality arises
from the presence of a group of symmetry, which dictates
the shape of the interactions, but not the value of the
constants involved. In turbulence, scale invariance is be-
lieved to be an important symmetry of the Navier-Stokes
equations in both two and three dimensions. It would
then be natural to observe some common universal
features in 2D and 3D turbulence, independently of the
value of the slope of energy spectra. This possibility was
recently suggested by Dubrulle [4], who observed that a
new model of intermittency in 3D turbulence by She and
Lévéque [5] could be interpreted as stemming from a gen-
eralized scale covariance principle (see also the interpre-
tation of She and Waymire [6] in terms of infinitely divisi-
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ble laws). It should therefore be valid in any scale-
invariant system apparent to turbulence. This hypothesis
has been checked by Frick et al. [7] for a class of shell
models with different conservation laws. The scale in-
variance suggested by She-Lévéque with a large spectrum
of parameters has been confirmed. The goal of the
present contribution is to explore this conjecture by
studying the scaling properties of structure functions in a
statistically stationary 2D turbulence, and see whether
they are compatible with the intermittency model of She
and Lévéque (hereafter SL).

The outline of the paper is as follows. After a brief
summary of the SL model and its basic hypotheses, and a
description of the numerical simulations involved (Sec.
II), the scaling properties of the structure functions are
studied (Sec. III A). Systematic check of the hypothesis
of the SL model is done, and the basic parameters of the
model are measured (Secs. III C-IIIF). A discussion of
the results is provided in Sec. IV.

II. THEORETICAL AND NUMERICAL BACKGROUND

A. The hierarchical intermittency model

One interesting property of fully developed 3D tur-
bulence is the existence of a scaling regime in the inertial
range for the velocity difference 8v; across a distance /:
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(svp)~1% . (1

As shown recently by Benzi et al. [8], isotropic homo-
geneous turbulence seems to obey a more general scaling
relation, extending property (1) for all / between the ener-
gy injection scale to a few Kolmogorov scales:

(8vf)=C, ¢ 80{)5” "% for all DS , ()

where C, ; are some numerical constants. This property
was called extended self-similarity (hereafter ESS). It en-
ables improved accuracy in the determination of the scal-
ing exponents §,.

The Kolmogorov refined similarity hypothesis predicts
that the exponents §, should be related to the corre-
sponding exponent of the energy dissipation €; over a ball
of size I via

&y =-§+Tp/3 , (3)
with

(e)y~1"r . 4)
If the flux of energy was nonintermittent, then all Ty

would be equal to zero, and one would obtain the famous
linear scaling §, =p /3 predicted by Kolmogorov in 1941.
Direct measurements of the scaling exponents in numeri-
cal simulations [9] or in experiments (see, e.g., [10]), how-
ever, favor nonzero 7,. Among the various models pro-
posed to explain this observation, the model of She and
Lévéque [5] gives predictions for the §, which fit within
1% the recent improved measured values of Benzi et al.
[8]. This model was slightly modified by Dubrulle [4] to
account for the ESS property, by making use of the “gen-
eralized scale” {(8v}) /e, in place of the natural scale /
used by She and Lévéque. The corresponding model is
then based on three hypotheses concerning the statistical
properties of a nondimensional quantity, 7, defined after
the mean energy dissipation ¢;:

— 5)

where €/’ is a normalization function, which enables us
to factorize out all the geometry dependence of the dissi-
pation. That way, m; truly represents an ‘“‘inertial range”
quantity, independent of external conditions.

The three hypotheses are then as follows.
(1) Siumilarity:

81)13 scal € T ©
(&v?y (e) m)’
scal
where = means have the same scaling properties, i.e.,

that the moments of the corresponding distribution are
everywhere proportional, up to a (moment-dependent)
numerical constant. This assumption is a natural exten-
sion of the Kolmogorov refined similarity hypothesis

[11].

(i) Moment hierarchy:

(w4
[ mD

where A p are numerical constant. Note that the condi-
tion =1 guarantees convergence of all the moments,
since (7) implies that

(ﬁ)c,C(,n.l)(l—ﬁp)/(l—B) . (8)

Note also that it means that €}~ (7,) “#(e*1) /(&)
for all p, so that if B < 1 we have exactly
€®)~ lim <—E€+—2
p—w  (€f)
The normalization factor €}’ can then be interpreted as

tracing the tail of the most intermittent structures.
(iii) Power-law intermittency:

<8U13> 4
ol , (10)
0‘K

B
, 0=B=1, )]

9)

(771)“‘

where I; is the Kolmogorov scale. This assumption
merely states that the dissipative structures are spatially
intermittent [4].

The combination of the three assumptions implies that
the structure functions follow the extended self-
similarity:

(8opy=C,(80)% , (11)
with a relative exponent:

7 —(1_m\P (1—pr7)

&, =01 A)3+A 1-B) " (12)

The scaling of the structure functions in the inertial range

(dvf)~1 b corresponds then simply to an absolute scal-
ing exponent:

§p=§3§p . (13)

Taking {3=1 and A=[=2/3, one finds the formula pro-
posed by She and Léveque [5], which fits very well the ex-
perimental data on fully developed isotropic 3D tur-
bulence. The nonintermittent K41 model is obtained
with =1 and/or A=0. An interesting observation is
that the value of Ep depends only on the scaling proper-
ties of (¢, ) /e\’ as a function of (v} ). In other words,
one could get the same relative exponent whether (¢; ) is
scale independent or not, as long as the ratio (¢;) /€'’
keeps the scaling.

B. Adaptation of the theory to 2D turbulence

Some adaptation is needed to apply SL theory to 2D
turbulence. Here we consider the situation in which a
two-dimensional incompressible turbulence is forced by a
stationary force whose spectrum is concentrated in a
neighborhood of the wave number k; and in which a stat-
ically steady state is reached. Therefore, the mean kinet-
ic energy E(t)=(|v(X,1)|?)/2 and the enstrophy
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Z(t)={w(X,t)?) /2 remain constant in time. Here, ¥ is
the velocity, @ =curlv, and ( ) refers to averaging over
all the position vector X. The velocity field is then deter-
mined by 2D vorticity equation

d,0+J(w,¢¥)=F+vAw , (14)

where 9 is the stream function, J the two-dimensional
Jacobian, and F the forcing. It is well known that in the
decaying inviscide case as well as in a statistically steady
state, corresponding to the compensation of the energy
input by the dissipation at large and small scales, the 2D
vorticity equation (14) is characterized by a family of in-
tegral constraints very different from the 3D situation.
The particular quadratic invariants are in this case the
kinetic energy and the enstrophy which are transferred
via nonlinear term in (14) from one scale to another, fol-
lowing Kolmogorov’s cascade scenario: a direct enstro-
phy cascade from injection scales I, ~k; ! toward small
scales where viscous dissipation acts, and an inverse ener-
gy cascade always towards large scales. Since viscous dis-
sipation is negligible in the limit of small k, we assume
that a statistically steady state is maintained by the fric-
tion effect of the external fields. In this situation, all nu-
merical simulations in periodic domain (see, e.g., [2,3,12])
show a spontaneous appearance of high vorticity concen-
trations inside persistent coherent vortices having ap-
proximately the same characteristic size I,=wk; ..
These vortices induce basic space-time inhomogeneities
of the 2D turbulent dynamics.

As in 3D turbulence, we shall consider the scaling of
the structure functions of the velocity differences, {8vf).
Following the ESS hypothesis, we shall specifically con-
sider the relative scaling of the structure function, as a
function of the scale:

(80p) ~(807)% . (15)

We shall investigate the existence of different regimes for

Zp, corresponding to the different spectral regimes (in-

verse energy cascade, coherent structures, enstrophy cas-
~cade).

Because of the enstrophy cascade at small scales and
the energy cascade at large scales, it is clear that the
refined similarity hypothesis (6) has to be modified. As
stressed by Kraichnan [13,14], a truly inertial range
quantity is given by fluxes of a given quantity, rather than
dissipation of the quantity. These considerations lead us
to define the nondimensional quantity ; appearing in (5)
in terms of the transfer produced by the nonlinear term
in (14), n;:

1
n,—TfIIw(v-V)a)drI . (16)
Therefore
77’1=7,—; ’ (17)
)
with
(™1
P=lim ———, (18)
g p—o {qf)
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The nondimensional quantity , is clearly directly related
to the cascade dynamics.

We assume that the three hypotheses formulated in
Sec. IT A are still satisfied in terms of this new nondimen-
sional quantity. This means that formula (12) character-
izing the relative scaling exponent Zp is in some sense
universal, and valid for both 2D and 3D turbulence. The
difference between these two cases only enters in the
value of the absolute scaling exponent ¢, =§3Zp via the
value of {;, which is, respectively, 1 for 3D and 2D ener-
gy cascade and the 3 for 2D enstrophy cascade. The ad-
vantage of using the relative scaling exponent is that it is
a simple measure of intermittency: if the (energy or en-
strophy) cascade is not intermittent, then £, » =P /3, corre-
sponding to A=0 or B=1. If the cascade is intermittent,
the relative scaling exponent should then follow (12), with
parameters A and B possibly different in the enstrophy
and energy range, characterized by different conservation
laws (see Dubrulle [4]).

C. The numerical 2D simulations

We use classical Eulerian simulations of stationary
forced and dissipate incompressible two-dimensional tur-
bulence which solve the vorticity equation (14) in the
form

d,0ot+J(w,¥)=F+D,+D, (19)

on a periodic square domain (27,27), using a pseudo-
spectral scheme. The forcing F is defined by keeping con-
stant in time the amplitude of the zonal mode (0, k;); the
term D, represents the dissipation of enstrophy at the
largest resolved- wave number k ~l. !, where I, is the
cutoff scale; D, represents a linear friction at the largest
scales (k~l; !, where I, is the scale corresponding to
the system size). D =t; '1; %, t, is a characteristic fric-
tion time. The numerical integration was pursued long
enough to reach a stationary regime in which energy and
enstrophy spectra do not vary in time. This corresponds
to the equilibrium state when the mean energy and en-
strophy input is compensated by the mean dissipation
rate at large and small scales. Consequently, our simula-
tions do not describe the phenomena of Bose condensa-
tion due the presence of finite boundaries [15]

In the sequel, we shall consider three different simula-
tions, referred to, respectively, as R1024F256, R1024F10,
and R1728F40.

R1024F256 1is a simulation with a resolution
1024X 1024, and a forcing at a large wave number
k;=256. This simulation therefore presents a well-
developed inverse cascade of energy. The dissipation
used in this simulation is parametrized by the anticipated
potential vorticity method (APVM) [16]:

D, =J[¢,6(—12V)* I (¢,0)] , (20)

where 6 is a characteristic dissipation time scale. The
scheme APVM was introduced by Sadourny and Basde-
vant [17,18] for the barotropic vorticity equation to
efficiently parameterize the subgrid scales flux. One of its
advantages compared to the hyperviscosity method is
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that it produces a realistic amplitude of the large-scale
barotropic modes when the cutoff scale is of the order of
the input scale.

R1024F10 is a simulation with resolution 1024 X 1024,
and a forcing at small wave number k; =10. This simula-
tion presents a well-developed direct cascade of enstro-
phy.

R1728F40 is a high-resolution simulation 17281728,
with a forcing at the wave number k; =40. In this simu-
lation, both the inverse cascade of energy and the direct
cascade of enstrophy can be studied.

The dissipation at largest resolved wave number used
in two later simulations is parametrized by the hyper-
viscosity method:

D,=—t (—1V*) 0, 1)

where ¢, is another characteristic time scale.

We would like to emphasize that contrary to recently
performed numerical experiments by Borue [19] and
Smith and Yakhot [15], we use in all our simulations a
linear friction at largest scales. The other difference con-
sists in the parametrization of the subgrid scales flux
when the cutoff is of the order of the forcing scale (exper-
iment R1024F256). In this case, we utilize (20) [and not
the usual (21)] while in [19] and [15] the subgrid scales
flux is parametrized by (21).
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The energy spectra and energy and enstrophy fluxes for
R1024F256 and R1728F40 are displayed, respectively, in
Figs. 1 and Fig. 2 as a function of the wave number k.
l;=m/k; and I =m/kg are, respectively, the forcing and
the most energetic scales. The energy range is character-
ized by wave numbers k; <k <k;, the enstrophy range
by wave numbers k > k;. Our three simulations confirm
previously reported results [20,21]: in the energy range,
we observe a k ~>/3 spectrum characteristic of the inverse
cascade of energy predicted by Kraichnan [13]; in the en-
strophy range, for k >>k;, we observe up to wave num-
ber kj, a k ~33 spectrum, steeper than the theoretical k ~3
prediction. In the two cases where the enstrophy cascade
is sufficiently developed (R1024F10 and R1728R40), we
may note the existence of a range of scale, extending
beyond k; towards larger wave numbers, where the spec-
tra do not follow a well-defined scaling. We shall label
the end of the corresponding range of scale by kg. This
range scale (k; <k <kg) has been previously identified
[2] as corresponding to the strong coherent structures ob-
served in forced 2D simulations. The absence of spectral
scaling in the range of scale corresponding to the
coherent structure can be seen as the manifestation of the
“laminar” character of these structures [1]. As we shall
see, other manifestations of this “laminar” character will
appear when considering other scaling properties.

4 a ]
r -573 5
f
[ :
;
k E
4 F kp
F A A J FIG. 1. Energy spectra (a), energy (b), and
10! 102 k enstrophy fluxes (c) as a function of wave num-
ber k. Arrows indicate the injection wave
number k; and the most energetic wave num-
. o ber kg; the resolution used is 1024 X 1024 (log-
o F MB ] E C My~ 3 logscale).
C ] 0f — 3
10 102 kK 101 102 k
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FIG. 2. Energy spectra (a), energy (b), and
enstrophy fluxes (c) as a function of wave num-
ber k. Arrows indicate the injection wave
number k;, the most energetic wave number
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kg, as well as kcs and kp; the resolution is
1728 X 1728 (log-log scale).
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III. RESULTS

A. Structure functions

The velocity structure function (8vf) as a function of
the nondimensional scale separation / =k;k ~! (where k;
is the injection wave number) have been computed for
r=2,3 4,6, 8, 10, and 12 in the case R1024F256 [Fig.
3(a)] and R1728F40 [Fig. 4(a)]. In the first case [corre-
sponding to the inverse energy cascade, Fig. 3(a)], one
may note an approximate scaling range between k; and
kg, followed by a large-scale saturation, where all the
structure functions become independent on the scale. In
the second case [the enstrophy cascade, Fig. 4(a)], one ob-
serves a well-defined scaling regime below kg, a large-
scale saturation after k;, and an intermediate regime be-
tween kg and k;, where the scaling is contaminated by
the existence of a bump at k;. The same structure func-
tions have been plotted also following the ESS representa-
tion (2), as a function of the third structure function
(s =3) in Fig. 3(b) (for R1024F256) and Fig. 4(b) (for
R1728F40). One may note a clear improvement of the
scaling regime between k; and kp in the inverse energy
cascade, but no noticeable improvement in the enstrophy
cascade case, especially in the domain of the coherent
structure. Thus, it seems that coherent structure
somehow prevents the development of ESS, which would
suggest that it is a phenomenon associated with strongly
turbulent motions.

The scaling exponents of the structure functions have
also been estimated. From comparison between Fig. 5(a)

10° k

(exact local exponent as a function of scale) and Fig. 5(b)
(relative local exponent computed using ESS), it is clear
that the relative scaling exponents are much better
defined than the exact exponents in the inverse energy
cascade, and extend within at least a decade of wave
number. Note also the progressive deterioration of the
estimation for p > 6, due to a lack of statistics. In the en-
strophy cascade range, one may note that even the rela-
tive scaling exponents are not well defined in the coherent
structure range, in contrast with both exact and relative
exponents at smaller scales. The measured values of the
relative scaling exponents ~:‘°"‘S in the range where they
are well defined have been reported in Tables I-1IV for all
our experiments. The values measured in the enstrophy
cascade, although rather inaccurate, are very close to the
linear K41 law (Ep =p/3). This is in agreement with
both Kraichnan [13,14] and the Lebedev and Falkovich
model [22,23], which predicts no intermittency in the en-
strophy cascade.

B. Definition of 7,

The check of the various hypotheses described in Sec.
II requires that the quantity ; appearing in (17) is well
defined, i.e., that the quantity S,(I)=(n? *1) /(%) con-
verges to a finite limit. Figure 6 shows S, as a function of
(|8v;]®) for increasing values of p (up to p =15). One
indeed observes a saturation of this quantity towards
large values of p. In practice, we therefore adopted S 5(/)
as an estimation of 77;° to compute 7; according to (17).
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FIG. 3. Velocity structure functions {8v”) as a function of
(a) the nondimensional scale / and (b) {(|8v|*) for p=2 (4), 3
(B), 4(C), 6(D),8(E), 10 (F), and 12 (G); scales corresponding
to k; and ky are indicated. Experiments R1024F256 (log-log
scale).

C. Refined similarity hypothesis

A test of the refined similarity hypothesis (6) can be
made by the following procedure. By definition of 7;, we
have

() _ ()
(w7

If we assume {(7}) to obey some scaling property in some

(22)

to k;, kg, kcs, and kp are indicated. Experiment R1728F40
(log-log scale).

well-defined range, {7%) ~1"?, we should then have
(m)
< ™ )p

with y,=(7,—p7)/§3. The refined similarity hy-
pothesis will then be satisfied if

~(su})" (23)

§p=§—+yp,3. 24)
Our test of the refined similarity hypothesis consists then
first in computing 7,3 using Eq. (23), and then checking
that (24) is satisfied. Note that v, is a measure of the
intermittency (y,,3=0 in the nonintermittent case).
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FIG. 5. (a) Absolute scaling exponent £, and (b) relative scal-
ing exponent fp as a function of the nondimensional scale /. Ex-
periment R1024F256 (lin-log scale).

Note that the measurement of v, 3 can be expected to
be more accurate than the measurement of Zp, because it
involves lower moments (or order p/3 rather than p).
Figures 7(a) and 7(b) show (7{”3) /{m;)?/? as a function
of (8v}) for, respectively, R1024F256 and R1728F40.
One observes well-defined scaling laws, which enable ac-
curate determination of the exponent y,,;. The corre-
sponding values are given in Tables I and II, together
with the check of (24). It can be seen that the refined
similarity hypothesis is reasonably well satisfied. Since
the computation of v, ,; is more accurate, from now on
we may accept p/3+7v,,; as an estimation of Zp, rather
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FIG. 6. The quantity S,=({n,+)/{(n,) as a function of
(|6v|®) for increasing values of p (p<=15). Experiment
R1024F256 (log-log scale).

than the value directly measured, using structure func-
tions. One may then note that the intermittency (devia-
tion from the Kolmogorov law Z,=p/3) is much
stronger in the inverse cascade than in the enstrophy cas-
cade. Actually, the values derived in the inverse energy
cascade are close to those measured in 3D isotropic tur-
bulence [8]. The same check was also performed on the
run R1024F10, in which the intermittency in the enstro-
phy cascade was found slightly stronger than in
R1728F40. The results are reported in Table III.

D. Moment hierarchy

The moment hierarchy (7) can be tested directly by
plotting R,()=(wf*')/(7}) as a function of R,_,(])
for different p. This is done in Fig. 8 for both R1024F256
(filled circles) and R1024F10 (open circles). The lines
connect values of R,(/) with the same index p. Only
values of / lying, respectively, in the energy cascade range
kg <k <k; (for R1024F256) and in the enstrophy cas-
cade range kg <k <kp for R1024F10 have been kept. If
the hierarchy holds, all lines corresponding to different
values of p should be parallel to each other, with a slope
B. One may indeed note in Fig. 8 such a tendency, with
clear evidence for different values of B for R1024F256
(8=0.7) and R1024F10 (B=0.55). The different lines
are apparently all aligned, enabling a good determination
of B in both cases. In the case R1728F40, the same pro-
cedure gives an estimate of B in the enstrophy cascade
range much closer to 1 (8=0.75). Estimate of B in the
inverse cascade range could not be done accurately, be-
cause of the lack of resolution at these scales. The
difference between the parameter 8 estimated in the run
R1728F40 and R1024F10 might be interpreted in various
ways. This could mean, for example, that B does not de-
pend only on the conservations laws, as populated by Du-
brulle [4], but also on the other parameters such as the
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FIG. 7. The quantity (m/®)/{m;)?/* as a function of
(|8v|*) and definition of y,; (a) experiment R1024F256, (b) ex-
periment R1728F40 (log-log scale).

Reynolds number. This could be due to the fact that
R1024F10 does not fully include all the dynamics of 2D
turbulence, because it does not resolve the inverse energy
cascade. Finally, we may mention that there is a rather
large inaccuracy in the determination of these exponents,
becuase this representation does not enable us to disen-
tangle lines corresponding to p > 3, which all scatter near
the R,(/)=1 range. We thus tried another representa-
tion, in which (m£/?) is plotted as a function of {;). If
the hierarchy holds, one should obtain straight lines, with
slope (1—p?73)/(1—B) [see Eq. (8)]. If B<1, one may ex-
pect a saturation in the slopes for large p, towards the
value 1/(1—pB). The results are shown in Fig. 9(a) (for
R1024F256) and Fig. 9(b) (for R1024F10). In the latter
case, one may note a bump developing in the range where
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TABLE 1. Scaling exponents of the run R1024F256 in the in-
verse energy cascade range ky <k <k;. ZP is the relative scaling
exponent of the velocity structure function; ¥, is the relative
scaling exponent of the enstrophy flux; if the refined self-
similarity hypothesis is valid, one should have fp =p/3+Y,
A is the intermittency exponent; “meas” and “th” refer, respec-
tively, to measured and theoretical values. The theoretical
values have been computed using the SL formula, with A=0.47
and $=0.7.

p E:ms Ypr3 P/3% Y Z;h

2 0.7+0.01 0.016+0.001 0.68 0.68
4 1.2740.01 —0.033+0.001 1.3 1.30
6 1.73+0.03 —0.144+0.001 1.86 1.86
8 —0.32+0.002 2.35 2.37
10 —0.53+0.02 2.8 2.86
12 —0.8+0.05 3.2 3.31

TABLE II. Scaling exponents of the run R1728F40 in the in-
verse energy cascade range ky <k <k;. {, is the relative scaling
exponent of the velocity structure function; ¥, 3 is the relative
scaling exponent of the enstrophy flux; if the refined self-
similarity hypothesis is valid, one should have £,=p/3+7v,,3;
A is the intermittency exponent; “meas” and “th” refer, respec-
tively, to measured and theoretical values. The theoretical
values have been computed using the SL formula, with A=0.4
and B=0.35.

14 Z:;neas Yps3 P/3% Yo E;h

2 0.8+0.01 0.06+0.002 0.72 0.71
4 1.0£0.05 —0.11+0.02 1.23 1.26
6 —0.4+0.03 1.6 1.74
8 —0.71+0.06 1.97 2.18
10 —0.9+0.07 2.43 2.6

12 —1.24+0.09 2.8 3.01

TABLE III. Scaling exponents of the run R1024F10 in the
enstrophy cascade range kcs <k <kp. EP is the relative scaling
exponent of the velocity structure function; v, 3 is the relative
scaling exponent of the enstrophy flux; if the refined self-
similarity hypothesis is valid, one should have fp =p/3+Y,;
A is the intermittency exponent; “meas” and “th” refer, respec-
tively, to measured and theoretical values. The theoretical
values have been computed using the SL formula, with A=0.13
and B=0.55.

p E;eas Yo/3 p/3%Yps3 E;h

2 0.66%0.01 0.0£0.002 0.66 0.67
4 1.34+0.01 0.0+0.002 1.33 1.32
6 2.02+0.02 —0.02+0.01 1.98 1.94
8 —0.12+0.01 2.56 2.55
10 —0.231+0.02 3.13 3.15
12 —0.35+0.05 3.65 3.74
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(log-log scale).
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coherent structure dominates, resulting in a deterioration
and a loss of the scaling. This shows that the moment
hierarchy is incompatible with the presence of coherent
structures. In the range of scale where the scaling is well
defined, we may compute the values of B for different p,
assuming that the slope is (1—p?”%)/(1—B). For
R1024F256, we find B decreasing from 8=0.71 for p =6,
down to B=0.56 for p =15. For R1024F10, we find
B=0.75 for p =6 and $=0.44 for p =15. These values
are compatible with the values obtained using the first
method, but imply rather large error bars on the deter-
mination of 8. This allows us to reconcile somehow the
difference in values of 8 found in the runs R1024F10 and
R1728F40 using the first method. We cannot, however,
rule out the possibility that B is not constant in the
hierarchy, and may vary with p, up to an asymptotic
value. As we shall see, however, the value of 8 obtained
using the first method enables a good fit of the exponents
of the structure function using the SL formula. This ar-
gument is in favor of a single value of 8 throughout the
hierarchy.

E. Scaling intermittency

To check the third hypothesis (10) and determine the
scaling exponent A (if it exists), we have made plots of
(), =) {nf) /(") as a function of (8v/). The
results are shown in Fig. 10(a) (for R1024F256) and Fig.
10(b) (for R1024F10). In the limit p— o0, {7, )p tends to
() defined in (17). Therefore, if the third hypothesis is
valid, {(m; ), should behave as {8v/ )* for large enough p.
Figures 10(a) and 10(b) indeed show a saturation of the
quantity ;) p for p > 10, with scaling properties in some
range of scales. For R1024F256 (the inverse energy cas-
cade run), a well-defined scaling law holds in a range cor-
responding to ky <k <k;, with exponent A=0.47. For
R1024F10, the scaling holds only in part of the scale
range kg <k <kp, because of a “bump” occurring near
k =kcg. This is not consistent with the scaling proper-
ties of other quantities, which were found to hold in the
whole range kg <k <kj. This somehow casts doubt on
the generality of the third hypothesis and its applicability
when coherent structures are present in the flow. Never-
theless, if one estimates the exponent A in the limited
range of scale where it exists, one finds A=0.13, much
lower than in the inverse energy cascade.

F. Validity of SL formula

As a last consistency check, we computed the theoreti-
cal relative scaling exponents £ using SL formula (12)
and the values of B and A found in the preceding sections.
The results are given in Tables I-IV. One may compare
these estimates with the measured value £;°*=
p/3+v,,3 (see Sec. IIIC). The agreement is quite good
for R1024F256, but less satisfactory (although reason-
able) for R1024F10. This may be partly due to the fact
that the scaling properties were not rigorously satisfied in
the enstrophy cascade range, because of the influence of
coherent structures.
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IV. DISCUSSION

We begin by summarizing the main results. Our study
of scaling properties of velocity structure functions in
high-resolution numerical simulation of stationary 2D
turbulence has revealed that the direct cascade of enstro-
phy is characterized by a very weak intermittency, while
the inverse cascade of energy displays an intermittency
with corrections similar to that found in 3D turbulence.
We would like to note that the latter result is restricted to
the cases of stationary turbulence and perhaps can be ex-
tended neither to decaying turbulence nor to the case of
inverse energy cascade in the presence of Bose condensa-
tion, considered by Smith and Yakhot [13]. Following
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TABLE IV. Scaling exponents of the run R1728F40 in the
direct enstrophy cascade range kcs <k <kp. £, is the relative
scaling exponent of the velocity structure function; y,; is the
relative exponent of the enstrophy flux; if the refined self-
similarity hypothesis is valid, one should have fp =p/3+Y,
A is the intermittency exponent; “meas” and ““th” refer, respec-
tively, to measured and theoretical values. The theoretical
values have been computed using the SL formula, with A=0
and B=0.8

p Z;neas Yp/3 P/3% Y g;h

2 0.661+0.004 0.0+0.002 0.66 0.66
4 1.34+0.01 0.0+0.05 1.34 1.33
6 2.04+0.02 —0.02+0.01 2.02 2.00
8 2.75+0.05 —0.03+0.01 2.69 2.66
10 3.45+0.05 —0.05+0.02 3.38 3.33
12 4.1£0.1 —0.05+0.03 4.05 4.00

these authors, the intermittency in the inverse cascade
range appears only in the presence of Bose condensation
at the largest scales.

The two “domains of intermittency” are separated in
the scale space by a domain in which coherent structures
dominate the dynamics, and in which no scaling property
can be detected. The intermittency corrections found in
the two scaling regimes were compared with a prediction
given by a model from She and Lévéque [5] and Dubrulle
[4]. The three main hypotheses pertaining to the predic-
tion were checked independently and found to be reason-
ably well satisfied in the scaling regimes, proving that at
least the theoretical prediction is a fair approximation to
reality. The two main parameters of the theory 3 and A,
connected, respectively, to the relation between the
different moments of transfer in inertial range and to the
structure of the highest moments, were estimated. In the
energy cascade, values similar to those found in 3D tur-
bulence were obtained. In the enstrophy cascade, A was
found to be very small, consistent with the weak intermit-
tency observed. As for B, it was found to vary between
0.5 and 1, depending on the resolution and the degree of
development of the cascade.

We now examine some implications of the present re-
sults. The weak degree of intermittency observed in the
enstrophy cascade shows that it cannot be held responsi-
ble for the corrections to the k ~3 spectra often reported
in numerical simulations. This confirms previous conjec-
ture that these corrections are mainly due to the strong
coherent structures, which were found in our analysis to
display no special scaling properties. This somehow
brings up again the question of the role of the coherent
structures in corrections to exact Kolmogorov-like scal-
ing, already addressed in 3D turbulence by Procaccia and
Constantin [24]. Also, the absence of scaling properties
found in the domain of coherent structure makes more
plausible the hypotheses made by Benzi et al. [1], namely
that they behave like “laminar drop embedded in a tur-
bulent flow.” Regarding the issue of universality, ad-
dressed in the Introduction, our results do not provide a
definite answer, due to the impossibility of getting very
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high-precision results. In this sense, we cannot say that a
universality suggested by She-Lévéque-Dubrulle is more
plausible than that advocated, for example, in statistical
models of 2D turbulence [25] or in the model of “sweep-
ing of the small eddies by the large one” by Falkovich
and Lebedev [23]. The present work shows, however, the
benefit of considering this possibility, and should be con-
sidered as an exploratory pioneering work that should be
pursued and extended. This could possibly clarify some
of the issues addressed in the course of this work, such as
the constancy of B throughout the cascade or the depen-
dence of B and A on the conservation laws or the viscosi-
ty. Some of these issues have already been addressed in
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certain theoretical work [26] or in numerical experiments
performed on shell models of turbulence [8,27].
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